On the number of maximum independent sets in Doob graphs

نویسنده

  • Denis S. Krotov
چکیده

The Doob graph D(m,n) is a distance-regular graph with the same parameters as the Hamming graph H(2m+n, 4). The maximum independent sets in the Doob graphs are analogs of the distance-2 MDS codes in the Hamming graphs. We prove that the logarithm of the number of the maximum independent sets in D(m,n) grows as 2(1+o(1)). The main tool for the upper estimation is constructing an injective map from the class of maximum independent sets in D(m,n) to the class of distance-2 MDS codes in H(2m+ n, 4).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distance-2 MDS codes and latin colorings in the Doob graphs

The maximum independent sets in the Doob graphs D(m,n) are analogs of the distance-2 MDS codes in Hamming graphs and of the latin hypercubes. We prove the characterization of these sets stating that every such set is semilinear or reducible. As related objects, we study vertex sets with maximum cut (edge boundary) in D(m,n) and prove some facts on their structure. We show that the considered tw...

متن کامل

INDEPENDENT SETS OF SOME GRAPHS ASSOCIATED TO COMMUTATIVE RINGS

Let $G=(V,E)$ be a simple graph. A set $Ssubseteq V$ isindependent set of $G$,  if no two vertices of $S$ are adjacent.The  independence number $alpha(G)$ is the size of a maximumindependent set in the graph. In this paper we study and characterize the independent sets ofthe zero-divisor graph $Gamma(R)$ and ideal-based zero-divisor graph $Gamma_I(R)$of a commutative ring $R$.

متن کامل

On the Maximum Number of Dominating Classes in Graph Coloring

In this paper we investigate the dominating- -color number،  of a graph G. That is the maximum number of color classes that are also dominating when G is colored using colors. We show that where is the join of G and H. This result allows us to construct classes of graphs such that and thus provide some information regarding two questions raised in [1] and [2].  

متن کامل

Different-Distance Sets in a Graph

A set of vertices $S$ in a connected graph $G$ is a different-distance set if, for any vertex $w$ outside $S$, no two vertices in $S$ have the same distance to $w$.The lower and upper different-distance number of a graph are the order of a smallest, respectively largest, maximal different-distance set.We prove that a different-distance set induces either a special type of path or an independent...

متن کامل

$k$-tuple total restrained domination/domatic in graphs

‎For any integer $kgeq 1$‎, ‎a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-‎tuple total dominating set of $G$ if any vertex‎ ‎of $G$ is adjacent to at least $k$ vertices in $S$‎, ‎and any vertex‎ ‎of $V-S$ is adjacent to at least $k$ vertices in $V-S$‎. ‎The minimum number of vertices of such a set‎ ‎in $G$ we call the $k$-tuple total restrained domination number of $G$‎. ‎The maximum num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1612.00007  شماره 

صفحات  -

تاریخ انتشار 2016